
Volunteers �n Large L�bre Software Projects �

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Chapter.I

Volunteers.in.Large.Libre.
Software.Projects:

A.Quantitative.Analysis.Over.Time

Mart�n M�chlmayr, Un�vers�ty of Cambr�dge, UK

Gregor�o Robles, Un�vers�dad Rey Juan Carlos, Spa�n

Jesus M. Gonzalez-Barahona, Un�vers�dad Rey Juan Carlos, Spa�n

Abstract

Most libre (free, open source) software projects rely on the work of volunteers.
Therefore, attracting people who contribute their time and technical skills is of
paramount importance, both in technical and economic terms. This reliance on
volunteers leads to some fundamental management challenges: Volunteer contribu-
tions are inherently difficult to predict, plan, and manage, especially in the case of
large projects. In this chapter we present an analysis of the evolution over time of
the human resources in large libre software projects, using the Debian project, one
of the largest and most complex libre software projects based mainly in voluntary
work, as a case study. We have performed a quantitative investigation of data cor-
responding to roughly seven years, studying how volunteer involvement has affected
the software released by the project, and the developer community itself.

� M�chlmayr, Robles, & Gonzalez-Barahona

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Introduction

Volunteer contributions are the basis of most libre1 software projects. However, the
characteristics, and the way of working of volunteers, can be quite different from
those of employees who are the main force behind traditional software development.
Volunteers can contribute with the amount of effort they want, can commit for the
time period they consider convenient, and can devote their time to the tasks they
may prefer, if the context of the project makes that possible (Michlmayr & Hill,
2003). But even in this apparently difficult environment, many libre software projects
have produced systems with enough quality and functionality to gain significant
popularity. Therefore, the fairly unstructured collaboration of volunteers has been
demonstrated as a viable software development strategy, even if it is associated with
certain challenges related to project management and quality (Michlmayr, 2004).
In this chapter we explore how these voluntary contributions evolve over time in
one of the largest libre software projects, Debian.
For our purposes, we will define volunteers as those who collaborate in libre soft-
ware projects in their spare time, not profiting economically in a direct way from
their effort. Volunteers can be professionals related to information technologies,
but in that case their activity in the libre software project is not done as a part of
their professional activity. Although the vast majority of participants in libre soft-
ware projects comply with our definition, it is important to note that there are also
non-volunteers, that is, paid people (normally hired or contracted), who produce
libre software. German has studied paid employees from various companies in the
GNOME project (German, 2004). He notes that they are usually responsible for less
attractive tasks, such as project design and coordination, testing, documentation, and
bug fixing. Also, “[m]ost of the paid developers in GNOME were, at some point,
volunteers. Essentially for the volunteers, their hobby became their job.”
The involvement of volunteers, of course, raises new economic and business model
issues that have to be taken into account in commercial strategies around libre soft-
ware. Collaboration from volunteers is difficult to predict, but if it is given, it may
add value to a software system in very economic terms for a software company.
The structure of this chapter will be as follows. In the second section we discuss the
nature and, in particular, the tasks performed by volunteers, paying special atten-
tion to those who contribute to Debian, the case study investigated in this chapter.
Following this section, a set of research questions regarding volunteer participation
will be raised. The primary goal of this chapter is to answer these questions based on
quantitative data. The methodology for retrieving the quantitative data used in this
study is first given. In this section, we also propose a number of measures that will
allow us to answer the questions. The results we have obtained as part of this study
will be presented and commented on in depth for the Debian project. Finally, conclu-
sions, applicability of the methodology, and further research will be discussed.

Volunteers �n Large L�bre Software Projects �

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

The.Debian.Project.and.its.Volunteers

Debian is an operating system completely based on libre software (Monga, 2004;
O’Mahony, 2003). It includes a large number of applications, such as the GNU
tools and Mozilla, and the system is known for its solid integration of different
software components. Debian’s most popular distribution, Debian GNU/Linux, is
based on the Linux kernel. Ports to other kernels, such as Hurd and FreeBSD, are
in development.
One of the main characteristics of the Debian distribution is that during the whole
life of the project it has been maintained by a group of volunteers, which has grown
to a substantial number. These individuals devote their own time and technical skills
to the creation and integration of software packages, trying to supply users with a
robust system which provides a lot of functionality and technical features.
Following our definition of volunteers, all maintainers in Debian are volunteers.
Some employers of people who act as Debian maintainers in their spare time permit
their staff to devote some of their time to Debian during work hours. Nevertheless,
the majority of work by most Debian maintainers is performed in their spare time.
In contrast to some projects, such as the Linux kernel and GNOME, there are no
Debian maintainers who are paid to work on the system fulltime, even though
a number of organizations have a commercial interest in Debian and contribute
varying degrees of manpower (and other resources) to the project. For example,
a number of regions in Spain have their own operating systems based on Debian;
HP made Debian more suitable for large telecom customers, and Credativ provides
commercial services for Debian and similar systems.
There are several tasks that volunteers can do in Debian: maintaining software
packages, supporting the server infrastructure, developing Debian-specific software,
for instance, the installation routine and package management tool, translating
documentation and Web pages, and so forth. From all these tasks, we will focus in
this chapter on package maintainers, whose task it is to take existing libre software
packages and to create a ready-to-install Debian package. Debian maintainers are
also called Debian developers, although their task is really not to develop software
but to take already developed software for the creation of a Debian package. This,
of course, does not mean that a Debian maintainer may not develop and maintain
software, but this is not usually the case: the original author (or developer), known
as the ‘upstream’ developer, and the Debian maintainer, are usually, but not neces-
sarily, not the same person.
Besides its voluntary nature, the Debian project is unique among libre software
projects because of its social contract (Debian Social Contract, 2006). This docu-
ment contains not only the primary goals of the Debian project, but also makes
several promises to its users. Additionally, there are a number of documents Debian
maintainers have to follow in order to assure quality, stability, and security of the

� M�chlmayr, Robles, & Gonzalez-Barahona

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

resulting distribution. In particular, Debian’s Policy document ensures that the large
number of volunteers working independently will produce a well-integrated system
rather than merely an aggregation of software packages which do not play together
very well (Garzarelli & Galoppini, 2003).
There has recently been some interest in studying how the voluntary status of Debian
members affects the quality of the resulting product. Managing volunteer contributors
is associated with certain problems that “traditional” software development usually
does not confront (Michlmayr & Hill, 2003). It is known that there are some intrin-
sic problems when the development process is carried out in a distributed fashion
(Herbsleb et al., 2001). The situation in Debian and similar projects is even more
complex because the development process is not only distributed but also largely
based on volunteers. This can lead to certain challenges, such as the unpredictability
of the level of their involvement (Michlmayr, 2004).
To some degree, the volatility of voluntary contributors can be limited by the
introduction of more redundancy, such as the creation of maintainer teams. The
creation of teams and committees for specific purposes, such as management, or
for complex tasks has been already reported in other libre software projects (as for
instance, German’s work on the GNOME project [2004]).

Research.Objectives.and.Goals

Related research has been very active in studying the static picture of a libre software
project community over the last years, as can be seen from studies performed on
Apache and Mozilla (Mockus et al., 2002), FreeBSD (Dinh-Trong & Bieman, 2005)
or GNOME (Koch & Schneider, 2002), leading to models that discuss onion-like
structures of libre software projects (Crowston & Howison, 2005). The main goal
of this chapter is to introduce the time axis in these kinds of studies, focusing most
notably on the contribution of volunteers.
We have therefore set up a list of research questions which we would like to answer
for several large libre software projects. In the case of Debian, we have additional
information that permits us to link the work done by a volunteer with a piece of
software, so we can, for example, study what has happened to packages from vol-
unteers who have left the project. In the following, the set of questions that we are
raising will be answered in detail for the Debian project.
The specific questions we aim to answer with this chapter are the following:

a. How.many.volunteers.does.the.project.have,.and.how.does.this.number.
change.over.time? This will provide us with some basic data, useful when

Volunteers �n Large L�bre Software Projects �

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

working with subsequent questions. When we started the study, we expected
a steady increase of volunteers over time, as it is already known that the
number of packages included in the system has been growing in that way
(Gonzalez-Barahona et al., 2004). In addition, we will try to find out if the
work ratio (measured as activity or output per developer) has increased over
time or not.

b. How.many.volunteers.from.previous.releases.remain.active? We want to
measure the volatility of the volunteers in large libre software projects. That
is, do volunteers join the project and work on it for short periods of time, or,
on the contrary, do they stay for many years? Specifically, we want to calculate
the half-life of contributors of the project. The half-life is defined as the time
required for a certain population of maintainers to fall to half of its initial size.
This figure could be easily compared with other libre software projects and, of
course, with statistics from companies from software and other industries.

c. What.is.the.activity.of.volunteers.who.remain.in.subsequent.releases? An-
swering this question will allow us to know if “older” volunteers strengthen
their contributions as time passes, contributing more to the project, or whether
they become less active. There are two possible hypotheses one could pro-
pose. On the one hand, those volunteers who have been involved for a long
time may be very experienced and therefore more efficient in their work than
less experienced developers. On the other hand, young developers may have
more time or energy to devote to the project and therefore contribute more.
Both theories are possible and mutually compatible.

d. What. happens. to. packages. maintained. by. volunteers. who. leave. the.
project?.Our intention is to see if we can find a regeneration process in libre
software projects that allows them to survive the loss of some of their human
resources.

 Since Debian maintainers are volunteers, they may quit the project at almost any
time, leaving their packages unmaintained. There are two possible outcomes
regarding the future of those packages: First, they can be taken over (adopted)
by another maintainer. Alternatively, if nobody is interested in adopting them,
they will eventually be removed from the archive and excluded from future
stable releases. Such removals of unmaintained packages are part of Debian’s
Quality Assurance effort. Our intention was to know how this inherent charac-
teristic of the voluntary contributors affects Debian, and how this is damped
down by other (possibly new) maintainers.

e. Are.more.“important”.and.commonly.used.packages.maintained.by.more.
experienced maintainers? It can be interesting to know whether packages
which are considered crucial for the functioning of the system are maintained
primarily by volunteers who have more experience. For this, we have considered
the most used packages as the targets of the study. We have defined as crucial

� M�chlmayr, Robles, & Gonzalez-Barahona

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

packages those which are usually installed on every system, as, for instance,
the base system which in the case of the Debian GNU/Linux operating system
is composed, among others, of the Linux kernel and the GNU tools. This does
not necessarily mean, of course, that crucial packages are more difficult to
maintain than other packages, but as they are used by all users of the system
and the rest of the software heavily depends on their proper functioning, these
packages have to be maintained with special care. Data about the importance
of each package will be obtained from the Debian Popularity Contest2 that
tracks how many people have installed a given package.

Methodology.and.Sources.of.Data

Debian consists of four parallel versions (stable, testing, unstable, experimental)
which can be downloaded from the Internet. The focus of this study is on the stable
versions from Debian 2.0 onwards, up to version 3.1, which provide good snapshots
of the history of the distribution. These releases comprise a period of time from July
1998 to June 2005. There have been releases of Debian before 1998 (Lameter, 2002),
but they have not been taken into consideration for this study since the sources of
data we have used in this study were not available for them. For each release, we
have retrieved the corresponding Sources.gz file (see next section) from the Debian
archive. We have then extracted information about packages and their maintainers
from this file and stored the results in a database. After that, we performed some
semi-automatic cleaning and massaging of the data that will be explained in more
detail below. Final results were obtained through queries to the database, and cor-
relations that have been implemented by another set of scripts.3

In addition to the analysis of official releases, we have enriched the findings by
additionally taking a more fine-grained data source into account. While releases
are only done occasionally, in the case of Debian with years between releases,
uploads to the Debian archive are done on a continuous basis. We have analyzed
the activity related to these uploads to clarify some of the findings of the paper on
which this chapter is based (Robles et al., 2005). The estimations of the size of
the releases have been done using a software that counts source lines of code and
avoids double-counting the code included in various packages (this methodology
is described in detail (Gonzalez-Barahona et al., 2001)), using previously published
data (Gonzalez-Barahona et al., 2004), except for release 3.1, which was calculated
specifically for this study. The data related to the importance of packages has been
retrieved from the Debian Popularity Contest (see section on this topic).

Volunteers �n Large L�bre Software Projects �

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Debian.Sources.File

Since version 2.0, the Debian repository contains a Sources.gz file for each release,
listing information about every source package in it. Every source package contains
the name and version, list of binary packages built from it, name and e-mail address
of the maintainer, and some other information which is not relevant for this study.
As an example, see an excerpt of the entry for the mozilla source package in Debian
2.2 below. It can be seen how it corresponds to version M18-3, provides four binary
packages, and is maintained by Frank Belew.

[...]
Package: moz�lla
B�nary: moz�lla, moz�lla-dev, l�bnspr�, l�bnspr�-dev
Vers�on: M�8-�
Pr�or�ty: opt�onal
Sect�on: web
Ma�nta�ner: Frank Belew (Myth) <frb@deb�an.org>
Arch�tecture: any
Standards-Vers�on: �.�.0
Format: �.0
D�rectory: d�sts/potato/ma�n/source/web
F�les: ��ee��0b9�ccc�9���ccccd0bc��908a ��9 moz�lla_M�8-�.dsc
���9�����ad������0��ee0�0bad0�c8 �8������ moz�lla_M�8.or�g.tar.gz
�adf8�de�e��bf9�0ee0�c0deca�0��� �8��� moz�lla_M�8-�.d�ff.gz

[...]

Debian.Popularity.Contest

The Debian Popularity Contest is an attempt to map the usage of Debian packages.
Its main goal is to know what software packages are actually installed and used.
Information from the Popularity Contest is used by Debian, for example, to decide
which software to put on the first CD.
The system functions as follows: Debian users may install the popcon package, which
sends a message every week with the list of packages installed on the machine as
well as the access time of some files which may give hints regarding the last usage
of these packages. Of course, privacy issues are considered in a number of ways:
Upon installation, users are explicitly asked if they want to send this information to
Debian, and the server which collects the data anonymizes it as much as possible.

8 M�chlmayr, Robles, & Gonzalez-Barahona

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

The resulting statistical information of all users participating in this scheme is publicly
available on the Web site of the project. For every package, it includes the number
of machines on which it is installed (inst), the number of machines which make
regular use of that package (vote), the number of machines with old versions of the
package (old), the number of recent updates (recent), the number of machines where
not enough information is available (no-file), and the maintainer of the package.
Below is an excerpt of the available data, in this case the top ten packages ordered
by installations as of December 4, 2004. The first 66 packages are installed on all
machines, with 6881 installations.

Debian.Developer.Database

From June 1999 onwards, Debian has held a database (http://db.debian.org) with
data related to members of the project. Some information, such as the full name and
user name, can be retrieved publicly through the Internet. This database also contains
information about the digital keys used by a developer. Debian makes use of digital
signatures through the use of the tools PGP (Pretty Good Privacy) and GPG (GNU
Privacy Guard) to approve uploads to their software archive. The use of digital
signatures provides two guarantees. First, the signature will show that the package
comes from a trusted source, that is, from an official Debian developer whose PGP
or GPG key is stored in the Debian keyring and this developer database. Second, by
verifying the signature on the package, it can be ensured that the package has not
been tampered with during the process of uploading it to the Debian archive.

rank name inst vote old recent no-files (maintainer)

1 adduser 6881 6471 94 316 0 (Adduser Development)

2 debianutils 6881 6517 50 314 0 (Clint Adams)

3 diff 6881 6425 261 195 0 (Santiago Vila)

4 e2fsprogs 6881 5448 825 608 0 (Theodore Y. Ts’o)

5 findutils 6881 6449 233 199 0 (Andreas Metzler)

6 grep 6881 6436 126 319 0 (Ryan M. Golbeck)

7 gzip 6881 6558 245 78 0 (Bdale Garbee)

8 hostname 6881 6112 715 54 0 (Graham Wilson)

9 login 6881 6407 56 418 0 (Karl Ramm)

10 ncurses-base 6881 56 143 6 6676 (Daniel Jacobowitz)

Table 1. Debian Popularity Contest statistics

Volunteers �n Large L�bre Software Projects 9

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Package Uploads

While the main data source of this chapter is the Sources.gz files from the last
official Debian releases, we have additionally taken uploads to the archive into
account to answer some of the research questions with more detail. As mentioned
above, Debian’s archive is separated into various branches. The official releases
are known as the stable branch, whereas Debian’s development tree is known as
“unstable.” Even though it is said that the development tree is usually fairly stable,
it is where major development occurs and as such, major bugs are introduced from
time to time.
When an upload is made to unstable, a summary of the changes is automatically
sent to a mailing list known as “debian-devel-changes.” By extracting data from the
archives of this list, the uploads made to the Debian archive over the last few years
can be studied. The archive of this mailing list starts towards the end of August
1997. Because August is not complete, we use the data starting with September,
since having data for full months allows for better comparisons. We then divided the
whole time period into periods of three months each, leading to 34 periods which
cover 8.5 years (102 months), from September 1997 leading up to February 2006. In
total, slightly more than 181,500 uploads have been observed in this period, leading
to a mean number of uploads of around 1,800 each month.
The method used to extract this information is as follows: first, the archives of the
“debian-devel-changes” mailing list are downloaded from Debian. These are then
parsed, leading to one message for each upload. These messages are signed by the
developer’s PGP or GPG key as described above. The information from these digital
signatures is then used to map each upload to a unique user id corresponding to the
developer who made the upload. The mapping from PGP or GPG key to user name
is obtained from Debian’s developer database and missing entries for old developers
are manually supplemented. After this information is obtained, information about the
developer (user name) and the date of each upload is stored in a database together
with the message id from the posting stored in the archive.
The extraction of this data leads to fairly precise results but there are some limit-
ing factors. First of all, it is important to take into account that uploads are not a
measure of effort. We use the data as an indication of activity of a developer but the
information is not rich enough to give specific information about how much effort
was involved with a specific upload. Second, for the last few years Debian had the
concept of “sponsorship,” whereby an official Debian developer would upload a
package created by a prospective developer (who is not part of Debian yet and whose
GPG key is therefore not recognized). In such cases, the main effort was done by
the prospective developer but the signature shows the name of the official Debian
developer. Since we are concerned with activity of developers and not with effort,
this is not an obstacle but it has to be considered during the interpretation of the data.

�0 M�chlmayr, Robles, & Gonzalez-Barahona

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Finally, while the archive software used by Debian now sends automatic notifica-
tions of new uploads to the “debian-devel-changes” list, this was done manually
in the past. Therefore, data from the past can be slightly unreliable. For example,
we observed a number of messages which were not signed by PGP or GPG. Out of
about 185,000, we have only detected about three thousand uploads for which no
information about the developer could be extracted automatically. We believe that
these are not significant and that data from uploads greatly enriches the findings
from studies using the Source.gz file from official Debian releases.

Evolution.of.the.Number.of.Debian.Maintainers

The information of the evolution of the number of Debian maintainers will provide
us with some basic data useful when working with subsequent research questions.
When we started the study, we expected a steady increase of maintainers over time,
as it is already known that the number of packages included in the system has been
growing linearly (Gonzalez-Barahona et al., 2004). In fact, we expected the pack-
ages-to-maintainer ratio to be nearly constant, since it seems reasonable to consider
that volunteers devote similar amounts of effort over time, which would lead to a
constant number of packages per maintainer.
Figure 1 shows on the left side the evolution of the number of Debian maintainers for
the latest five stable releases. As we have expected, the number of Debian individual
maintainers has been growing over time. Debian 2.0 (July 1998) was put together by
216 individual maintainers, while the number of maintainers for later releases are
859 for 3.0 (July 2002) and 1,314 for 3.1 (June 2005). This shows a growth of about
35 percent every year. The right side of the figure shows the cumulative number of
developers who have made uploads to Debian (starting as of September 1997 and
finishing with February 2006). This chart gives more precise information as to the
growth over time but it does not include some information which the other chart
captures. As mentioned above, only official Debian developers are considered and
therefore the numbers are lower than in the chart on the left side which considers
all maintainers of packages in Debian, regardless of their official status. The more
detailed information the chart on the right conveys is very interesting, though. A
remarkable stagnation of the growth can be observed. This is because the New
Maintainer process, Debian’s admission process, was stopped for several months
at the end of 1999. The growth continues in the middle of 2000 and, interestingly
enough, the pause in the admission of the developers did not have any significant
effect on the overall growth of the project.
Based on the data from official releases, we have conducted a small statistical
analysis; the results are shown in Table 2. The ratio of packages per maintainer

Volunteers �n Large L�bre Software Projects ��

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

��00

�000

800

�00

�00

�00

�99�
0

�998 �999 �000 �00� �00� �00� �00� �00� �00� �00�

Figure 1. Number of maintainers over time. The left chart is based on Debian re-
leases while the right one is based on continuous uploads.

(see column “Pkg/Maint”) grows over time, contrary to our initial hypothesis. The
growth of packages is actually bigger than that of volunteers who contribute to the
project. There are some possible explanations for this finding. First, it is possible
that improvements of the development tools or in the practices employed have led

�� M�chlmayr, Robles, & Gonzalez-Barahona

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

to an increase in the efficiency of developers. Second, due to increased interest in
libre software, the development speed in general has accelerated and volunteers
are more committed.
Interesting enough, the median does not vary (with the exception of Debian 3.0) over
time in these last years. Half of the maintainer population does not have more than
three packages to maintain. Furthermore, the mode shows that the most frequent
situation is a maintainer who is in charge of one package. In brackets we can find
the number of developers who actually maintain only one package, which is around
one forth of the total population of Debian maintainers.
The next three values (the standard deviation, the Gini coefficient,4 and the maximum
number of packages maintained by a single maintainer) strengthen the idea that the
distribution of work tends to be distributed in a more unequal way, with a small
number of maintainers maintaining more and more packages while the number of
packages the vast majority is in charge of does not change much. Compared to other
libre software applications and, in general, to other studies which have looked at the
distribution of work in libre software projects (Ghosh &d Prakash, 2000; Koch &
Schneider, 2002; Hunt & Johnson, 2002; Mockus et al., 2002; Ghosh et al., 2002),
we can see that, unlike other projects, Debian is far away from a Pareto distribution.
In terms of the Gini coefficient, Debian shows values from roughly 0.5 to 0.6 while
studies of the activity in CVS repositories of other projects have found Gini to be
in the range between 0.7 and 0.9 (Robles, 2006).
Finally, in Figure 2 we see the number of individual developers making uploads to
the Debian archive for each three month period. A significant growth in the number of
contributors can be seen in the first few years of the observed period. Since roughly
the beginning of 2001, a fairly constant number of individuals makes contributions to
Debian. There are about 550 unique contributors, even if they change over time.
The first column gives the date of the release specified in the second one. “Maint”
is the number of maintainers that maintain at least a package, “Packages” the num-
ber of total packages for that release, “Pkg/Maint,” the mean number of packages
per maintainer, “Median” the median number of packages, “Mode” gives the most

Date Release Maint Packages Pkg/Maint Median Mode Std..Dev Gini Max

Jul 98 2.0 216 1,101 5.1 3 1 (52) 5.8 0.492 50

Mar 99 2.1 296 1,559 5.3 3 1 (76) 6.5 0.521 55

Aug 00 2.2 453 2,601 5.7 3 1 (122) 7.4 0.535 69

Jul 02 3.0 859 5,119 6.0 4 1 (208) 8.2 0.539 79

Jun 05 3.1 1,314 7,989 6.1 3 1 (386) 9.1 0.577 127

Table 2. Statistical analysis of the growth in number of Debian maintainers

Volunteers �n Large L�bre Software Projects ��

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

frequent contribution in number of packages and in brackets the number of maintain-
ers who contribute to it, “Std. Dev,” the standard deviation of our sample,” “Gini”
the Gini coefficient, and “Max” the maximum number of packages that a unique
maintainer is responsible for.

Tracking.Remaining.Debian.Maintainers

At the time of the release of Debian 2.0 in July 1998 there were 216 voluntary
developers contributing to Debian. We have studied how the involvement of these
216 contributors to Debian 2.0 has changed over time. Table 3 gives an overview
of the number of contributors from the original group left at each release, as well
as the number of packages maintained by them. As the figure shows, the number
decreases steadily, with only 117 of the original 216 contributors (54.2%) still pos-
sessing ownership of a package in June 2005. Based on these figures, we concluded
in a previous paper that the half-life value had not been reached after six and a
half years and estimated that the half-life value would be around 7.5 years (or 90
months) (Robles et al., 2005).

��0

�00

��0

�00

��0

�00

�99�-0� �998-0� �999-0� �000-0� �00�-0� �00�-0� �00�-0� �00�-0� �00�-0� �00�-0�

��0

�00

��0

�00

��0

�00

Figure 2. Mean number of developers making uploads per each three month period

�� M�chlmayr, Robles, & Gonzalez-Barahona

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Taking the more fine-grained information from uploads into account, we can now
revise these findings. Taking package ownership as an indication for activity is
error prone, since it has been shown that a number of “maintainers” are actually
inactive and do not maintain their packages (Michlmayr, 2004). It can take several
months or longer until the situation is resolved, in particular if maintainers are busy
but do not want to admit to themselves that they do not actually have enough time
anymore. Uploads are therefore a much better measure in this case since they show
activity. While this measure does not show the effort done by a maintainer it shows
that they are still active, which is the question being asked here.
Based on data from uploads, we can see that as of the three-month period starting in
June 1998, only 187 out of the original 216 contributors (which still possess pack-
ages in the release done in July 1998) are still active. Taking these 187 developers
as the new population, we find that the group reaches their half-life in the periods
between June and September 2004. This leads to a half-life value of less than 78
months (6.5 years). This is in line with the originally estimated value of 7.5 years,
a slight over-prediction due to the fact that it takes some time until inactivity is
reflected in the maintainer field of a package. The value obtained from this popula-
tion is also in line with those obtained from other populations observed as part of
the investigation of uploads to Debian, as can be seen in Figure 3. They all show a
half-life of between 75 and 90 months.
It would be interesting to perform further analysis about which factors influence how
long volunteers remain active. There is already evidence that some volunteers face
feelings of burn-out (Hertel et al., 2003), but further studies into human-resource
management and motivation in libre software projects could have positive effects
on extending the half-life of volunteer contributions.
The number of packages for which these developers are responsible is also interest-
ing. The initial number of packages maintained by the 216 contributors of Debian
2.0 was 1,101. The corresponding number of packages in Debian 2.1 (around nine
months later) for the developers remaining rose to 1,351 and then to 1,457 for Debian
2.2, where the maximum number of packages was achieved. Then it decreased to
1,305 for Debian 3.0, and in the last Debian version it had similar figures as in their
first release, although now with half of the maintainers.
This data shows that there has been a continuous increase in the mean number of
packages that maintainers are responsible for. While the number of packages per
maintainer was slightly above five for the 2.0 release, this number has grown to
nine packages per maintainer in release 3.1. It also seems that the mean value keeps
on growing, although at a lower pace, and that it has a tendency towards a value
around nine as we can see from the last two releases. Given the large amount of time
between the last two releases, we can assume that this observed pattern is stable. We
have already discussed possible explanations for this behavior with the data about
the evolution in number of Debian maintainers (see Table 2).

Volunteers �n Large L�bre Software Projects ��

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Figure 3. Half-life of Debian maintainers: How populations shrink over time. The
horizontal line at 0.5 shows when a population reaches half-life

�

0.9

0.8

0.�

0.�

0.�

�99� �998 �999 �000 �00� �00� �00� �00� �00� �00�

0.�

0.�

Regarding the involvement of maintainers, we can see from the median that there is
a general shift towards maintaining more packages, as the median value starts with
three packages and raises up to five for Debian 2.2 and Debian 3.0. The mode, on the
other hand, shows that the number of maintainers who only maintain one package
decreases over time more quickly than the number of total maintainers (the total
number of maintainers drops from 216 to 117, a drop of 46%, while the number of
maintainers who maintain only one package decreases from 52 to 20, a 62% drop;
this means that the number of maintainers with more than one package shrinks
from 164 to 97, which is only 34% less, almost half of the drop for maintainers in
charge of a single package). The cause for this may be twofold: On one hand those
maintainers could have left the project, and on the other they could have gotten more
involved in it by maintaining more packages. In any case, maintaining one package
could be seen as a “hot” zone in which nobody stays for a long time and where a
decision has to be taken: to get more involved in the project or to leave.
The standard deviation and the Gini coefficient give an idea of the distribution of
work. Both values show that there is tendency to have a less equally distributed load
of work. Of particular interest is the Gini coefficient, which starts at almost 0.5 and
grows up to 0.574. The maximum number of packages that a single maintainer is in
charge of grows consequently, from 50 packages in Debian 2.0 to 83 in Debian 3.1.
It should be noted that the maximum number of packages of the first three Debian
versions under study correspond to a different person than the last two.

�� M�chlmayr, Robles, & Gonzalez-Barahona

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Investigating Maintainer Experience

In the previous paragraphs we tracked maintainers from Debian version 2.0 over
time to see how their contributions evolved. In the following we are going to do
the opposite; we will take the last Debian release (Debian 3.1) and will try to track
when maintainers first started participating in the project. This will allow us to
have a measure of experience in the project. Maintainers who entered in the same
release will be grouped and analyzed together.
Figure 4 shows when currently active maintainers got involved in the project. For
every maintainer of a package in the latest release, we have investigated in which
release their first contribution can be found. In addition to the 117 developers who
have made steady contributions since July 1998 (release 2.0), 55 participants got
involved before Debian 2.1, and 106 arrived with Debian 2.2. In the last two stable
releases, 384 and 652 new maintainers have been identified.
The evolution of the number of packages per maintainer given in Table 4 provides
evidence about the impact of experience on the number of packages maintained.

Date Release Maint Packages Pkg/Maint Median Mode Std..Dev Gini Max

Jul 98 2.0 216 1,101 5.1 3 1 (52) 5.8 0.492 50

Mar 99 2.1 207 1,351 6.5 4 1 (38) 7.3 0.501 55

Aug 00 2.2 188 1,457 7.8 5 1 (33) 9.2 0.515 69

Jul 02 3.0 147 1,305 8.9 5 2 (20) 10.6 0.540 65

Jun 05 3.1 117 1,055 9.0 4 1 (20) 12.1 0.574 83

Table 3. Packages maintained by the Debian 2.0 maintainers

Figure 4. First stable release to which Debian 3.1 maintainers have contributed

Deb�an �.�

Deb�an �.0

Deb�an �.�

Deb�an �.�

Deb�an �.0

Volunteers �n Large L�bre Software Projects ��

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

We can see that for the first three versions considered, the values range around 9.0
up to 11.5 packages per maintainer, while in the last two the number of packages is
lower. In general, the tendency is that older maintainers have more packages than
those who joined later. The exceptions are maintainers who joined with Debian 2.1.
For this version, we can see a statistical distortion in the mode as it has a value of 5
while the values for all other versions is 1 (or 1 and 2 in the case of Debian 2.2).
With regard to the median value, we can see that it is also higher for more experienced
maintainers, although in this case it is not that clear as we have seen with the mean
number of packages. The different behavior of the last two releases is interesting:
While Debian 3.1 has a median of two with many (up to 246) maintainers only in
charge of one package, those maintainers who entered in Debian 3.0 and who are
still active, have a median value of five and a smaller proportion of them maintain
a single package. Again, this supports our previous conclusion that maintaining a
single package is only a temporary situation.
The standard deviation of the sample does not give us much information in this
case. Maybe it stresses the distorted behavior of Debian 2.1 with such a high value;
interestingly enough it shows that the data is more homogeneous as we come nearer
to Debian 3.1. This is an expected effect, as “younger” maintainers should have
a similar (smaller) involvement while “older” ones may vary more. Nonetheless,
the Gini coefficient does not necessarily support this finding as the values show no
clear tendency over time (the highest value is for Debian 2.0 followed closely by
Debian 3.1). This is also the case for the maximum number of packages maintained
by a single person which fluctuates from version to version without any predictable
direction. In any case, we can see that very active maintainers enter any time in
the project, some of them with a surprisingly high involvement. For instance, from
July 2002 to June 2005 one new maintainer became in charge of 106 packages!
Obviously, the effort needed for the maintenance of a package can vary widely.
Further exploration is needed to estimate the effort associated with the maintenance
of these packages.

Date Releale Maint Packages Pkg/Maint Median Mode Std..Dev Gini Max

Jul 98 2.0 117 1,055 9.0 4 1 (20) 12.1 0.574 83

Mar 99 2.1 55 631 11.5 6 5 (8) 15.1 0.544 81

Aug 00 2.2 106 1,008 8.8 6 1;2
(16) 9.7 0.515 55

Jul 02 3.0 384 2,835 7.2 5 1 (63) 9.5 0.511 121

Jun 05 3.1 652 2,221 4.0 2 1 (246) 7.4 0.570 106

Table 4. First release as maintainer for maintainers in Debian 3.1

�8 M�chlmayr, Robles, & Gonzalez-Barahona

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Packages.of.Maintainers.who.Left.the.Project

When maintainers leave the project, their packages become unmaintained (the
Debian project uses the expression “orphaned”). These packages may be taken up
by others (“adopted” in the Debian jargon), or they will not be present in the next
stable release. In Table 5 the ratios and numbers of orphaned and adopted packages
between any pair of the studied releases are shown.
The table should be read as follows: The first column shows the number of packages,
15, for which their maintainers have left the project (column “Orphaned”) and that
have been adopted, 14, by other (possibly new) maintainers (column “Adopted”) from
Debian 2.0 to Debian 2.1. This means that the percentage of orphaned packages that
have been adopted is 93.3% (column “Adopt/Orph”), so in this case few packages
got lost. The last two columns help situating the amount of orphaned packages we
are talking about, giving the share of orphaned packages in comparison to the total
number of packages for each release.
Looking at the rest of the rows in the table, we can see that the percentage of adopted
packages is very high: more than 60% for all releases considered. This happens even
for releases with a very high portion of orphaned packages (for instance, between
version 2.0 and 3.1). In other words, even though maintainers who left Debian
between July 1997 and June 2005 were responsible for 35.0% of the packages in
Debian 2.0, 65.7% of these packages can still be found in version 3.0. We can thus

Note: Each row shows packages present in the older release (first column) and not in the newer (“Orphaned”
column), and which of those were adopted. The last columns show the percentages of package “saved” (adopted
to orphaned, Adopt/Orph), and orphaned in the newer release to total in the older (Orph/Total1) and newer
(Orph/Total2) releases.

Table 5. Orphaning and adoption of packages

Release.1 Release.2 Orphaned Adopted Adopt/Orph Orph/Total1 Orph/Total2

2.0 2.1 15 14 93.3% 1.3% 1.0%

2.0 2.2 61 40 65.6% 5.5% 1.5%

2.0 3.0 231 171 74.0% 21.0% 4.5%

2.0 3.1 385 253 65.7% 35.0% 4.8%

2.1 2.2 47 31 66.0% 3.0% 1.8%

2.1 3.0 302 220 72.8% 19.4% 5.9%

2.1 3.1 516 332 64.3% 33.1% 6.5%

2.2 3.0 281 207 73.7% 10.8% 5.5%

2.2 3.1 685 433 63.2% 26.3% 8.6%

3.0 3.1 685 435 63.5% 13.4% 8.6%

Volunteers �n Large L�bre Software Projects �9

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

affirm that Debian counts on a natural “regeneration” process for its voluntary
contributors and that there is a high probability that the packages of a maintainer
who leaves the project will be adopted by others.
Another interesting fact is that the ratio of adopted to orphaned packages is decreas-
ing in later releases. This means that the number of orphaned packages grows more
quickly than that of adopted, i.e., there are some packages missing in every new
release. If a package is unmaintained and falls off the next release, it will probably
not enter a future one. In this study we have only considered removed packages
from maintainers who left the project, but it is likely that some software will also
be abandoned by maintainers who still remain active and are therefore not covered
by this study.
In any case, it should be noted that users are left unsupported when a package
(maybe providing a unique functionality) from a previous release is not present in
subsequent ones. It may therefore be beneficial to establish mechanisms to ensure
that only packages which can be supported in the long term will not be introduced in
the first place, or that at least that they be introduced only in a section of the Debian
repository which is clearly marked as being less supported.

Experience and Importance

We have used data from the Debian Popularity Contest (presented in detail in the
section Debian Popularity Contest) to find out whether more “important’ packages
are maintained by more experienced volunteers. Table 6 shows the data correspond-
ing to installations and use of packages by developers which are still in the project,
and which were already present in the studied releases. In it we can see, for instance,
that Debian 2.0 and 3.1 have 117 common maintainers, who are responsible for
1,091 packages which have been installed 1,305,907 times and 576,991 that are
regularly used.

Release. .CMaint. .CPkg. .Installations. .Votes. .Inst/Maint. .Votes/Maint

2.0 121 1,091 1,305,907 576,991 10792.6 4768.5

2.1 176 1,722 1,584,413 673,236 9002.3 3825.2

2.2 290 2,730 2,217,199 885,448 7645.5 3053.3

3.0 683 5,565 3,923,753 1,405,322 5744.9 2057.6

3.1 1315 7,989 5,248,869 1,711,496 3991.5 1301.5

Table 6. Installations and regular use of packages

�0 M�chlmayr, Robles, & Gonzalez-Barahona

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

The CMaint column shows how many maintainers Debian 3.1 had in common with the
release in the first column, while the CPkg shows the number of packages maintained
by them. Columns Installations and Votes give the sum of the packages installed
and voted (used regularly) for those packages maintained by common maintainers.
The last two columns show the ratios of both to common maintainers.
If we take the number of installations per maintainer and the number of regularly used
packages per maintainer (“Votes/Maint’) we can answer the question we proposed in
the section Research Objectives and Goals. According to our hypothesis, these ratios
decrease over time, which would mean that more experienced volunteers maintain
packages which are installed and used more often. In fact, this can be observed
through all Debian releases. An alternative (or complementary) explanation to our
initial hypothesis is that many of the essential components of the Debian system
were introduced in the first releases, and that new packages are mostly add-ons and
software that are not installed and used that often.

Conclusion.and.Further.Work

We have conducted a quantitative study of the evolution of the Debian maintainer-
ship over the last six-and-a-half years. We have retrieved and analyzed publicly
available data in order to find out how Debian handles the volatility of the volunteers
who made it happen.
Some of the most interesting findings are:

• Both the number of Debian maintainers and the number of packages per
maintainer grow over time.

• The number of maintainers from previous releases who remain active is very
high, with an estimated half-life of around 6.5 years (78 months). Slightly
less than half of the maintainers from Debian 2.0 still contribute to the current
release after more than 7 years.

• Developers tend to maintain more and more packages as they gain experience
in the project.

• However, this does not mean that maintainers who have been in the project
for more time maintain more packages than newer maintainers. In fact, in the
latest release, the highest packages per maintainer ratio is shown by those
entering the project around the year 2000.

From these facts, it can be said that Debian maintainers tend to commit to the project
for long periods of time. However, there is a worrisome trend towards a higher and

Volunteers �n Large L�bre Software Projects ��

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

higher ratio of packages per maintainer, which could imply scalability problems as
the number of packages in the distribution increases, if the project doesn’t admit a
proportional number of developers.
Another issue on which we have focused is what happens to those packages that
were maintained by developers who left the project. Most of them are taken over
by other maintainers, so that we can state that a natural “regeneration” exists. Based
on the data we have researched, those packages which are not adopted by other
maintainers in the next release, and are therefore not present in it, are unlikely to
be re-introduced in future releases.
Finally, we have also found that more experienced maintainers are responsible for
packages which are installed more often and used more regularly.
In addition to the new insights gained in this investigation, we have proposed a
number of further studies to elaborate on the findings of the present chapter. In
particular, team maintenance and its impact on the quality of packages would be
interesting to research. It is also not clear why there is an increase in the ratio of
packages per maintainer. Possible explanations are that better tools and practices
lead to more efficiency, or that with the success of libre software, new volunteers
show more motivation and commitment, but more data is needed before these ex-
planations can be conclusive.
From a more general point of view, this study explores the behavior of volunteers in
libre software projects and provides some answers as to why these kinds of voluntary
contributions are capable of producing such large, mature and stable systems over
time, even when the project has no means for forcing any single developer to do
any given task and when members may leave the project during important devel-
opment phases. It is impossible to infer the behavior of volunteer developers just
from the study of a single project, but given the size and relevance of the Debian
project, at least some conclusions can be exposed as hypotheses for validating in
later research efforts.
One of them is the stability of volunteer work over time. The mean life of contribu-
tors in the project is probably longer than in many software companies, which would
have a clear impact on the maintenance of the software (it is likely that developers
with experience in a module are available for its maintenance over long periods of
time). Another one is that volunteers tend to take over more work with the passing
of time if they remain in the project: In other words, they voluntarily increase their
responsibilities in the project. Whether this is because it is easier for them because
of their experience, or because they devote more effort to the project, is for now
an open question. Yet a third one is the stability of the voluntary effort when some
individuals leave the project: Most of their work is taken over by other developers.
Therefore, despite being completely based on volunteers, the project organizes itself
rather well with respect to drop-outs, which is an interesting lesson about how the
project can survive in the long term.

�� M�chlmayr, Robles, & Gonzalez-Barahona

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

As a final summary, we have found that given that there are no formal ways of
forcing a developer to assume any given task, voluntary efforts seem to be more
stable over time, and more reliable with respect to individuals leaving the project
than we had initially expected.

Acknowledgment

The work of Martin Michlmayr has been funded in part by Google, Intel, and the
EPSRC. The work of Gregorio Robles and Jesus M. Gonzalez-Barahona has been
funded in part by the European Commission under the CALIBRE CA, IST program,
contract number 004337. We would also like to thank the anonymous reviewers for
their extensive comments.

References

Crowston, K., & Howison, J. (2005). The social structure of free and open source
software development. First Monday, 10(2).

Debian Social Contract. (2006). Debian social contract. Retrieved from http://www.
debian.org/social_contract

Dinh-Trong, T. T., & Bieman, J. M. (2005). The FreeBSD project: A replication
case study of Open Source development. IEEE Transactions on Software
Engineering, 31(6), 481-494.

Garzarelli, G., & Galoppini, R. (2003). Capability coordination in modular organi-
zation: Voluntary FS/OSS production and the case of Debian GNU/Linux.

German, D. (2004). The GNOME project: A case study of open source, global soft-
ware development. Journal of Software Process: Improvement and Practice,
8(4), 201-215.

Ghosh, R. A., Glott, R., Krieger, B., & Robles, G. (2002). Survey of developers
(Free/libre and open source software: Survey and study). Technical report, In-
ternational Institute of Infonomics, University of Maastricht, The Netherlands.
Retrieved from http://www.infonomics.nl/FLOSS/report

Ghosh, R. A., & Prakash, V. V. (2000). The orbiten free software survey. First Mon-
day, 5(7). Retrieved from http://www.firstmonday.dk/issues/issue5_7/ghosh/

Gonzalez-Barahona, J. M., Ortuno Perez, M. A., de las Heras Quiros, P., Centeno
Gonzalez, J., & Matellan Olivera, V. (2001). Counting potatoes: The size of
Debian 2.2. Upgrade Magazine, II(6), 60-66.

Volunteers �n Large L�bre Software Projects ��

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Gonzalez-Barahona, J. M., Robles, G., Ortuno Perez, M., Rodero-Merino, L.,
Centeno Gonzalez, J., et al., (2004). Analyzing the anatomy of GNU/Linux
distributions: Methodology and case studies (Red Hat and Debian). In S. Koch
(Ed.), Free/open source software development (pp. 27-58). Hershey, PA: Idea
Group Publishing.

Herbsleb, J. D., Mockus, A., Finholt, T. A., & Grinter, R. E. (2001). An empiri-
cal study of global software development: Distance and speed. In ICSE ‘01:
Proceedings of the 23rd International Conference on Software Engineering
(pp. 81-90).

Hertel, G., Niedner, S., & Herrmann, S. (2003). Motivation of software developers
in open source projects: An Internet-based survey of contributors to the Linux
kernel. Research Policy, 32(7), 1159-1177.

Hunt, F., & Johnson, P. (2002). On the Pareto distribution of open source projects.
In Proceedings of Open Source Software Development Workshop, Newcastle,
UK.

Koch, S., & Schneider, G. (2002). Effort, cooperation and coordination in an open
source software project: GNOME. Information Systems Journal, 12(1), 27-
42.

Lameter, C. (2002). Debian GNU/Linux: The past, the present and the future. Re-
trieved from http://telemetrybox.org/tokyo/

Michlmayr, M. (2004). Managing volunteer activity in free software projects. In
Proceedings of the USENIX 2004 Annual Technical Conference, FREENIX
Track, Boston (pp. 93-102).

Michlmayr, M., & Hill, B. M. (2003). Quality and the reliance on individuals in
free software projects. In Proceedings of the 3rd Workshop on Open Source
Software Engineering, Portland, OR (pp. 105-109).

Mockus, A., Fielding, R. T., & Herbsleb, J. D. (2002). Two case studies of open
source software development: Apache and Mozilla. ACM Transactions on
Software Engineering and Methodology, 11(3), 309-346.

Monga, M. (2004). From bazaar to kibbutz: How freedom deals with coherence
in the Debian project. In Proceedings of the 4th Workshop on Open Source
Software Engineering, Edinburg, Scotland, UK.

O’Mahony, S. (2003). Guarding the commons: How community managed software
projects to protect their work. Research Policy, 32, 1179-1198.

Robles, G. (2006). Empirical software engineering research on libre software:
Data sources, methodologies and results. PhD thesis, Universidad Rey Juan
Carlos.

Robles, G., Gonzalez-Barahona, J. M., & Michlmayr, M. (2005). Evolution of
volunteer participation in libre software projects: Evidence from Debian. In

�� M�chlmayr, Robles, & Gonzalez-Barahona

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

Proceedings of the 1st International Conference on Open Source Systems,
Genoa, Italy (pp. 100-107).

Endnotes

1 In this chapter we will use the term “libre software” to refer to any software
licensed under terms compliant with the Free Software Foundation definition
of “free software,” and the Open Source Initiative definition of “open source
software,” thus avoiding the controversy between those two terms.

2 http://popcon.debian.org
3 All the code used has been released as libre software, and can be obtained

from http://libresoft.dat. escet.urjc.es/index.php?menu=Tools
4 The Gini coefficient is a normalized measure of inequality; values near 0

point out equal distributions while values close to 1 are indicative for high
inequalities.

