
How to Have a Successful Free Software Project

Anthony Senyard and Martin Michlmayr
Department of Computer Science and Software Engineering

The University of Melbourne
ICT Building, 111 Barry St, Parkville

Melbourne, Victoria, Australia
anthls@cs.mu.oz.au, tbm@cyrius.com

Keywords: free software, software lifecycle, develop-
ment process.

1 Abstract

Some free software projects have been extremely successful.
This rise to prominence can be attributed to the high quality and
suitability of the software. This quality and suitability is achieved
through an elaborate peer-review process performed by a large
community of users, who act as co-developers to identify and cor-
rect software defects and add features. Although this process is
crucial to the success of free software projects, there is more to
the free software development than the creation of a ‘bazaar’. In
this paper we draw on existing free software projects to define a
lifecycle model for free software. This paper then explores each
phase of the lifecycle model and agrees that, while the bazaar
phase attracts the most attention, it is the initial modular design
that accommodates diverse interventions. Moreover, it is the pe-
riod of transition from the initial group to the larger community
based development that is crucial in determining whether a free
software project will succeed or fail.

2 Introduction

Prominent free software projects such as Linux [34],
Apache [1], and FreeBSD [12] have been extremely successful.
Nevertheless, there are many projects which must be considered
failures. An obstacle to initiating and collaborating on free soft-
ware projects is the lack of a formal description of the activities
and the different phases of the lifecycle of such projects. The prin-
ciples of free software development have been circulated anecdo-
tally and are aimed at experienced developers [28, 8]. In this paper
a more complete, structured and detailed development lifecycle for
free software projects is described. This allows for a more system-
atic approach to be taken toward the development of free software
projects so as to increase the likelihood of success.

In his popular essay The Cathedral and the Bazaar, Eric S.
Raymond [28] investigates development structures in free software

and open source projects in light of the success of the Linux ker-
nel.1 A metaphor is given which compares traditional software
development (ie. where source code is not freely available) to the
building of a cathedral and free software developed by a commu-
nity of volunteers, to a market bazaar. We use the terminology of
the cathedral and the bazaar throughout this paper but rather than
view these approaches as diametrically opposed we see them as
complimentary phases within the same lifecycle. Figure 1 illus-
trates the three basic stages we believe a successful free software
project passes through.

The initial phases of a free software project does not operate in
the context of a community of volunteers. Indeed, only successful
free software projects make a transition from a traditional, closed
project to a community based project. Indeed, it is impossible
to originate a project in the bazaar phase. Although the require-
ment to attract and motivate volunteer developers and to create a
community around a project is known, no explanation of how free
software projects are actually started has been presented. Yet an
analysis of this phase indicates its centrality to the success of the
project.

It can be seen that the initial phase of free software projects
possesses all the characteristics of cathedral style development in
sharp contrast to the later bazaar phase. The initial phase to de-
velop an initial implementation is carried out by an individual or a
small team working in isolation from the community [4]. The ini-
tial implementation is developed by following the common soft-
ware engineering activities of requirements gathering, design, im-
plementation and testing without any contribution from the out-
side. This development process shows tight control and planning
from the central project author and has been referred to as ‘closed
prototyping’ by Johnson [16].

However, unlike traditional software projects a free software
project has to make a transition from the cathedral phase to the
bazaar phase to become a high quality and useful product. This
transition is associated with many complications, described in
this paper, and which are significant barriers to success. In fact,
while there are many examples of successful projects in the bazaar

1The terms free software and open source refer to software distributed
under certain licenses [26]. The development model of free software de-
scribed here refers to a group of volunteers, employing a decentralised
organisational structure and communicating via the Internet.

Proceedings of the 11th Asia-Pacific Software Engineering Conference (APSEC’04) 
1530-1362/04 $ 20.00 IEEE 



Modular design

Cathedral phase Transition phase

Distribute development
environment

Community

corrective maintenance
Parallel perfective and

Bazaar phase

Prototype

"Interest"

Peer reviews

Core developers

Unix philosophy

Project Author

Original "idea"

Figure 1. Free Software development lifecycle

phase, the majority of free software projects never leave the cathe-
dral phase and never access the resources of a community of co-
developers [6].

The aim of this paper is to provide guidance on how to to start
and manage a successful free software project. First, a descrip-
tion of the characteristics of free software projects in the bazaar
phase is given to draw out what is currently best practice. This
description provides us with the target for the initial phases of free
software projects, informs us as to what properties the software
should have to facilitate the bazaar phase and outlines issues which
must be managed for the project to remain successful. Second, we
describe the initial phase (which has much in common with cathe-
dral style development) that must be carried out before a project
can reach the bazaar phase. The cathedral phase description will
take the form of a linear presentation of the constituent stages as
outlined in figure 1. Along with the description, a set of condi-
tions which should be satisfied in order to continue to the next
stage within a phase will be presented. Thirdly, we describe the
activities which must be performed in the transition phase to allow
the project to operate successfully in the bazaar phase. Finally,
conclusions on the overall process and lifecycle are presented.

3 The Bazaar Phase

The aim of free software projects is to reach a stage where a
community of users can actively contribute to its further develop-
ment. This section details successful projects so as to define what
has worked and what are the pitfalls. From this it is possible to ex-
trapolate what is required in the cathedral phase and the transition
phase.

The key characteristic of the bazaar phase is that a community
of users and developers are allowed to review and modify the code
associated with a software system. The old adage “many hands
make light work” is appropriate in describing the reasons for the
success of free software. A large number of volunteers working
simultaneously on a project has numerous advantages and some
problems, which will be outlined in this section. We will refer
to the initial implementation as the software which is used at the
commencement of the bazaar phase. We will also refer to the tran-
sition phase as the steps carried out to put scaffolding in place to
support the bazaar phase. These concepts will be expanded upon
in section 4.

The bazaar style (illustrated in figure 2) makes source code
publicly available and contributions are actively encouraged, par-
ticularly from users. Contributions can come in many different
forms and at any time. Non-technical users can suggest new re-
quirements, write user documentation and tutorials, or note usabil-

ity problems; technical users can implement features, fix defects
and even extend the design of the software. The key benefit is the
software quality which comes from the thorough, parallel inspec-
tion of the software carried out by a large community of users and
developers.

These benefits are consistent with software engineering princi-
ples. The ‘debugging process’ of a free software project is synony-
mous with the maintenance phase of a traditional software lifecy-
cle. Maintenance costs of between 50% - 1300% of development
costs on a project have been reported [32, 19]. Irrespective of the
percentages, it is accepted that software maintenance consumes as
much or more resources than all of the previous stages of devel-
opment. Free software projects, once they reach the maintenance
phase and can access a community of co-developers, are much
more productive than traditional projects with limited maintenance
resources. In this section we will explore what activities facilitate
the bazaar phase.

Embodies

...
..

and steps to replicate

Source code
modifications and
bug fix

Source code
modifications and
feature

Feature request

Stable core implementation

Modular design

submit feature / bug fix / bug report / request to incorporate into main implementation

developers

core
Distribute

Details of bug

Feature request

Bug fix

Feature

developers

Community of
users and

Bug report

Figure 2. Bazaar style development lifecycle

3.1 Peer Review

Peer review (including inspections and walkthroughs) has been
established as part of best development practice and leads to high
quality software [10]. Free software projects employ decentralised
peer-review by allowing anyone full access to their code. While
only a limited number of developers can actually work on the im-
plementation of a program [5], there is no limit to the number of
people who can inspect the code and search for defects. It is only
possible to fix a bug once the associated conditions have been iden-
tified. Successful free software projects benefit from a large base
of users and developers who inspect code and identify bugs.

3.2 Concurrent Development

Activities within the bazaar phase can be performed concur-
rently as there is no distinct separation between activities [16].
There are two main types of development parallelism in the bazaar
phase. Firstly, several different types of development can be per-
formed concurrently, such as feature addition and bug fixing. Vol-
unteer developers can perform their favourite activities whenever
they wish. This increases the potential usefulness of volunteer de-
velopers to the project. Secondly, multiple developers can perform
implementation work in parallel. This allows numerous features
and fixes to be added quickly. Other tasks, such as documen-
tation and testing also require less coordination and can be per-
formed in parallel [23, 30]. However, there is a limiting factors on

2

Proceedings of the 11th Asia-Pacific Software Engineering Conference (APSEC’04) 
1530-1362/04 $ 20.00 IEEE 



the amount of implementation parallelism which can progress the
project [5]. This limiting factor is dependent on the modularity of
the design of the initial implementation. A second problem is the
gradually divergence of developer code from the main code base
which requires regular synchronisation.

3.3 Opening Up Requirements

The bazaar phase is characterised by an open process in which
input from volunteers defines the direction of the project, includ-
ing the requirements. The initial implementation is mainly based
on the project author’s requirements. In the bazaar phase, projects
benefit from the involvement of a diverse range of developers (with
different requirements) who work together to increase the func-
tionality and appeal of the software. This leads to the problem of
feature creep. To prevent this, the maintainer must decide whether
a specific feature is in line with the overall scope of the project and
the design. If they reject a feature, the volunteer will be discour-
aged from using and contributing to the project because it does not
have a feature they desire. On the other hand, if all features are in-
corporated the associated feature creep can result in large and po-
tentially unmaintainable software. This problem can be overcome
by having a clear and well communicated scope for the project
established in the transition phase.

3.4 Parallel Implementation and Debugging

Since many different people can contribute code to a free soft-
ware project, there should be guidelines which describe the coding
style and standards. The GNU Project has an elaborate document
describing the best practice and most bigger projects have similar
documentation or refer to well-known standards [17]. It is the task
of the maintainer to make sure that patches conform to these stan-
dards. Patches can come from different people and vary greatly in
size. In many projects, there is a small number of frequent con-
tributors who do most of the implementation while a much larger
group submit smaller patches to fix defects.

Debugging requires a certain level of technical expertise from
the user. In the past, those using free software were power users
and typically programmers themselves and this contributed to the
practice where users took part in the software inspection process.
This has changed as free software has become more popular in re-
cent years. While there are still many technically oriented users,
there is an increasing number of users who do not posses the tech-
nical skills to inspect the code or fix defects but who can still sub-
mit traditional bug reports. The advantage of free software over
proprietary software is that anyone can inspect the code and com-
plete a bug report. There is no dependency on the maintainer of the
software to fix the bug. Rather, there can be a large number of de-
velopers whose task it is to act as a layer between the maintainer
and the user. Increasingly, this task is performed by the vendor
who puts together complete software distributions based on free
software.

3.5 Design and the Importance of Modularity

As additions to the requirements and code base are made, the
design must be adapted. Volunteer developers provide a sounding

board for doing this. Design alternatives can be discussed and
tested in parallel as developers, motivated by the desire to create
the most elegant designs and implementations [27], compete to
produce the best designs.

A pitfall of adapting the design is that the complexity of the
design will increase. In evolving programs complexity increases
unless there is specific work performed in order to reduce it [18].
The only way to facilitate feature addition and avoid increasing
design complexity is with a modular design from the initial im-
plementation [2, 33]. A clear and modular design of the initial
implementation allows the community of developers to refine the
requirements and design within a specific scope and is crucial to
the success of the project [34].

However, at some point it may be technically desirable to re-
place a system with a simplified version rather than to continue
with the existing system. The need for a complete redesign can-
not be addressed through any properties of the initial implemen-
tation. There are several factors which promote system redesign.
First, the expanding scope of the requirements (from those initially
gathered by the project author) and parallel development combine
to make the initial design obsolete. In many cases, insights into
what the design should have been are gained during the bazaar
phase. Furthermore, the revised requirements can be so different
from the original ones that the design is simply not modular and
extensible enough to easily incorporate the new features. This was
the case with Apache which was based on the NCSA http daemon
and hence on a design more than 10 years old. Second, there is a
great incentive in the free software community to achieve techni-
cal excellence [27]. This desire means that if a complete rewrite
fulfils this goal, then the effort will be made. This was one of the
motivations when Perl 5 was written [16]. Third, there are no con-
straining economic requirements and so the desire for technical
excellence can be satisfied. In free software projects, a complete
redesign can be carried out even if iterative development is still
possible and easier in the short term.

In most cases, a complete redesign and reimplementation will
be performed in a manner similar to the creation of the initial
implementation development (the cathedral phase). A core team
(consisting of the best developers found in the bazaar phase) will
work together to create a totally new design and implementation.
This new initial implementation must be more modular and adapt-
able than the previous software. In summary, the key property of
the initial implementation from the cathedral phase (whether the
initial or the redesigned software) is a modular and extendible de-
sign.

4 The Cathedral Phase

Traditional software development is usually performed by ex-
perts working in isolation from their users. In this approach ver-
sions of the software are released after the development lifecycle
(illustrated in figure 3) leaves the test phase. This approach to de-
veloping software is marked by a static development organisation
and is accompanied by central planning efforts. Development is
driven by a team of individuals and users do not contribute nor
access source code. The main characteristic of the traditional life-
cycle is the release of new software versions at the completion of

3

Proceedings of the 11th Asia-Pacific Software Engineering Conference (APSEC’04) 
1530-1362/04 $ 20.00 IEEE 



adaptive

perfective
correctiveMaintenance

environment
organisation development

client/user acceptance

co-ordinated plan
scope and central

philosophy
organisation design

Requirements

Test

Design

Implementation

Figure 3. Traditional style development

testing. It is this approach which best characterises how the initial
implementation is developed.

risk evaluationNo suitable project identified

Negative scope and

Specific requirements

OROROR

Investigate Prototype

Plausible promise

Distribute

Plausible promise

to community

Requirement

not achieved

achieved
Prototype availablePositive scope and

Suitable project identified

Initiate

risk evaluation

Figure 4. Detailed Cathedral phase

4.1 Requirement

The only condition to be satisfied to move to the investigative
phase is that a user has some requirement which could be fulfilled
by software. Starting a new free software project is a serious un-
dertaking and involves a long-term commitment of time and en-
ergy. As such, free software projects can not get started unless
there is a strong incentive for doing so. For an individual to begin
the process of setting up a new project this motivation is gener-
ated by a specific requirement. In Raymond’s word, a project gets
started in order to “scratch an itch” [28].

4.2 Investigate

There is one basic condition to move to the initiate stage; that
no suitable project has been identified which can satisfy the users
needs. Alternatively, a suitable project may have been identified
but the user does not want to participate in the project.

The investigation stage ensures that no project has already ful-
filled the individual’s need. Thus, the individual starts an inves-
tigation of existing projects in order to find out if someone else
has completed or is working on a tool which fulfils their need. The
ideal scenario for the individual is to discover a project which does

exactly what they want. The project also benefits since it has at-
tracted a new user who will test the software through use, possibly
suggest new requirements and publicise the project.

If no such project is found, it is possible that the individual
might instead discover a project which does not yet offer the spe-
cific feature they are looking for but which has a similar scope and
requirements to those of the individual and which offers a ‘plau-
sible promise’. In this case, the individual can decide to partici-
pate in the project and request the specific feature or modify the
software to implement the desired requirement. This scenario ex-
plains how existing projects attract new volunteers and profit from
the community. The individual also benefits because it is much
easier to get involved in and contribute to an existing project than
to actually set up your own project. According to an extensive
study of free software developers, more than 30% got involved in
the free software community in order to improve products of other
developers [13].

However, it might also be the case that no project exists with
similar requirements or that a similar project exists but the indi-
vidual deems that it is not worthwhile to participate in this project.
Although the Unix philosophy (with which the free software com-
munity is often associated) promotes software reuse [29], there
are several psychological barriers which prevent this. Firstly, the
project might be written in a programming language the individ-
ual has not mastered or dislikes. Secondly, a developer might not
agree with the design decisions made by a project. Thirdly, they
may dislike the individuals involved in the project. These factors
can provide sufficient motivation for an individual to start their
own project. This attitude can result in duplication of effort and to
the existence of two mediocre software projects while one supe-
rior software project would have been possible had the two efforts
joined forces. In some situations starting a new project can be ben-
eficial because of a fundamental flaw with the existing software.

4.3 Initiate

There are two conditions which need to be satisfied to move
to the prototype stage. The first is that some analysis of require-
ments, risks and schedule has been performed, consciously or un-
consciously. The second is that the would-be developer is suffi-
ciently motivated by the implementation task to proceed.

Individuals who wish to start their own project should under-
take (consciously or unconsciously) risk analysis regarding the po-
tential for a successful project, requirements scoping and schedule
creation. Firstly, the risk analysis should address the individual’s
motivation and commitment to a long-term endeavour. Secondly,
the risk analysis should address whether the new project can com-
pete with existing ones and attract volunteers. The requirements
scoping should define the extent of the project and identify how
the new project can differentiate itself from existing projects. It is
also beneficial if the project author has a rough idea of the devel-
opment schedule. This allows other core developers (if they exist)
to help with the initial implementation.

This work is done informally as there are no official guidelines
for risk analysis, scoping and schedule creation in free software
projects. It is only necessary for the individual to have some posi-
tive indications from the analysis, scoping and schedule. However,
the more positive these analyses are the more more likely it is that

4

Proceedings of the 11th Asia-Pacific Software Engineering Conference (APSEC’04) 
1530-1362/04 $ 20.00 IEEE 



the project will be sustainable in the long-term and attract volun-
teers to move to the bazaar phase. The initiation stage also tests
the motivation of the would-be developer. Those who proceed are
motivated not just by the requirements and the potential for a suc-
cessful project but by the programming itself [15]. These factors
together with the initial individual’s requirement create sufficient
motivation to start the project.

4.4 Prototype

The condition the prototype must satisfy to begin the transi-
tion phase is that it implement the project author requirements and
is extendible to allow multiple developers to work on the project
simultaneously [2, 33].

Once the individual has decided that it is worthwhile to con-
tinue it is relatively easy to set up the project. No special equip-
ment is necessary as standard PCs are sufficient as development
platforms (in most cases). The software necessary to develop and
test software, such as compilers, debuggers and programming en-
vironments, were some of the first pieces of free software to be
created and are widely available with minimal distribution costs.

Once the project infrastructure has been established, the tra-
ditional stages of requirements gathering, design, implementation
and testing are followed and the individual moves to the developer
role. At this point, there is no rigid structure to the stages and activ-
ities of development. Some developers follow the stages linearly
while others prefer a more circular prototyping style in which they
repeat all or some stages several times. Choosing a development
model at this point is the responsibility of the developer(s) [2].

Only when the prototype is finished and the developer(s) decide
to move to bazaar style development does it become important to
get community feedback and involvement. The properties of the
design and implementation of the prototype must motivate others
to participate in the project. This is facilitated by a simple, clear
and modular design.

4.4.1 Requirements

The condition to move to design is simply that the developer has
some an an idea of the requirements of the software to be designed.
The requirements for the prototype stem from the developer’s spe-
cific needs [21, 33, 35]. These requirements and the desire to pro-
gram provide the intrinsic motivation to move forward. The devel-
oper has a good understanding of what they want which is refined
during the investigation and implementation stage. Sometimes the
aim of a project is to reimplement existing software in which case
requirements are derived from that source [21]. Additional re-
quirements come from other users requirements found during the
investigation stage and experiences with other software [21].

4.4.2 Design

The condition of the design to proceed to implementation is that
it can be extended – this is achieved through modularity and sim-
plicity. The process used within the design stage is not important
as long as the design has a number of key properties. Combined
with the practices of the individual, the Unix philosophy and cul-
ture provides a framework for design which has contributed to the

success of free software projects. Dividing a software system into
subsystems with clear communication and interfaces allows volun-
teers to contribute to the project without close coordination [23].
Such an approach is strongly advocated as part of best software en-
gineering practice and can be summarised as “a structure is stable
if cohesion is strong and coupling is low.” [9].

The sharing of source code is an important factor which con-
tributes to the design and implementation methods used in free
software projects. Source code is shared across the broader free
software community and it is possible to learn by example from
reading other’s code. Indeed, developers often study other free
software projects in detail and participate in them before initiating
their own. This progression instills an understanding of how to
design and implement complex software. This practice leads to a
certain homogeneity and compatibility in design and implementa-
tion style across different free software projects and is an effective
way of passing on the Unix philosophy [29]. This is less likely to
occur between companies who develop proprietary software (if at
all) as source code is seen more as a trade secret and competitive
advantage.

4.4.3 Implementation

The condition for the implementation to move to testing is that it
is technically adequate and shows “plausible promise” [28]. There
is considerable project infrastructure available for the implemen-
tation stage. This is due to the emphasis in the Unix philosophy on
software reuse and tool support [29]. As free software is often de-
signed and implemented in a modular way, software is often split
into different libraries. These libraries can then be used to imple-
ment functionality required in the initial implementation. Addi-
tionally, during implementation, standard tools used in free soft-
ware, such as GNU autoconf and GNU make, facilitate building
software [24]. The use of these tools leads to portability, another
goal of the Unix philosophy, and ensures that the source code of
many free software projects is embedded in common infrastruc-
ture. These facilitate working on different projects because there
is less learning of toolsets required [14].

4.4.4 Testing

The only condition required for the transition phase to commence
is that some plausible promise has been achieved with the initial
implementation and this has been reinforced through testing.

Before the implementation is released to the wider commu-
nity, the developer performs some testing. It is the decision of
the developer how elaborate this process is. Usually, specific test-
ing tools or methodologies, such as regression tests, are not in-
volved [3, 20]. Rather, the developer decides whether the program
works for them. If they are not satisfied with what they have pro-
duced, they can go back to the design or implementation phase.
On the other hand, if they are convinced that the program is in a
state where it can be shared with other people and attract more
developers, they can release the initial implementation and initiate
the transition to the bazaar phase.

5

Proceedings of the 11th Asia-Pacific Software Engineering Conference (APSEC’04) 
1530-1362/04 $ 20.00 IEEE 



4.5 Distribute

In the cathedral phase, questions about distribution and host-
ing of the project are less important. While an effective means
of distribution is crucial when making the transition to the bazaar
phase, the initial implementation is usually developed by a single
developer or a small team. Sharing the code by e-mail with other
developers or putting it on a web site are sufficient for distribu-
tion. It is possible to use public free software project hosting sites,
such as SourceForge or Savannah, but this is not necessary since
community review plays less of a role.

There are arguments for and against using hosting sites from
the outset. On the against side, if the the developer loses interest
in the project, hosting sites will be filled with dormant projects,
making it difficult for users and developers to find active projects.
On the other hand, using a public hosting site means that the code
is preserved and someone else may resurrect a dormant project.
However, it is increasingly the case that finding active projects on
large hosting sites is difficult. The need to have an effective means
to distinguish between active and dormant projects is becoming an
issue for free software projects.

5 The Transition

The transition requires a drastic restructuring of the project, es-
pecially in the way the project is managed. There are many ques-
tions which have to be considered in making a successful transi-
tion. The first question is how the code should be distributed. This
question is also related to issues of project infrastructure such as
the selection of a hosting site for the project. Secondly, the ques-
tion of which license to use influences the likelihood of contrib-
utors becoming involved in the development process and thereby
forming a bazaar. Thirdly, the management style to be used must
be established, even if it is an implicit decision. These questions
are shown in figure 5 and will be expanded upon in the subsequent
sections.

Wrong time, plausible
promise not achieved

Transition

obtain source code

Source code
easily accessible

Right time, plausible
promise achieved

Others cannot easily

Start transition

OROROROR

Distribute Infrastructure

Appropriate license
chosen

Management Style

Others not willing to
contribute under this license

Project author
becomes maintainer

Author cannot
manage a bazaar

Figure 5. Detailed transition

5.1 Distribution

Commencing the transition at the right time is crucial for a suc-
cessful project and is a hurdle many projects fail to overcome [11].
Since volunteers have to be attracted during the transition, the
prototype needs to be functional but still in need of improve-
ment [16, 28, 2]. If the prototype does not have sufficient function-
ality or stability, for example if the prototype constantly crashes,

potential volunteers may not get involved. On the other hand, if
the prototype is too advanced, new volunteers have little incentive
to join the project because the code base is complex or the feature
they require has already been implemented. For these reasons, the
project author must carefully consider when to start the transition
and make the code available to others.

5.2 Infrastructure

Assuming that the project author chooses the correct time to
start the transition, there are still risks associated with attracting
a community for the project which are related to the project in-
frastructure. The three main pitfalls during the period of the tran-
sition concerning the infrastructure are firstly the availability of
the source code, secondly the communication mechanisms for the
project and thirdly the choice of the license.

Firstly, the infrastructure associated with the project must
change to allow for a community to participate in the project and
access the source code. The source code must be easily accessi-
ble for others so they can download it, compile it, inspect it and
ultimately generate patches which can be submitted to the project
author. The mechanism to allow this are public hosting sites such
as SourceForge or Savannah, or the facilities of the project author.
In the past, it was sufficient to have tarballs of the source code but
it is increasingly expected that a CVS repository or at least daily
snapshots are available [31].

Secondly, project communication mechanisms must be insti-
tuted. The need for a community forum to discuss project issues is
vital to a successful free software project. The knowledge which
is accumulated by the project author during the bazaar phase has
to be shared with prospective collaborators. Large projects typ-
ically have different forums for user and developer questions as
well as a moderated group for announcements. An example of
good community forums are public mailing lists, which allow de-
velopers to ask questions about the design or implementation and
to post patches for other developers to review [14]. To a large
degree, public mailing lists and their archives replace formal doc-
umentation in free software projects. There is usually no formal
requirements specification or design documents for free software
projects but the information can often be gathered from mailing
lists. Furthermore, volunteers can create frequently asked ques-
tions (FAQs) by extracting questions and answers from previous
discussions on a project’s mailing list.

Thirdly, the source code must be distributed under a license
which prospective contributors accept and under which they are
willing to share their fixes and enhancements. While this may
sound like a non-issue since there are guidelines which say ex-
actly when a license is considered ‘Free Software’ or ‘Open
Source’ [7, 25], it has been a problem in some projects, includ-
ing some code related to the Linux kernel. A major difference
between the various licenses is how the code can be used in pro-
prietary software. For an overview of different categories of soft-
ware, such as proprietary and commercial software, see http:
//www.gnu.org/philosophy/categories.html. The
appropriate license depends on the nature of the project and re-
quires careful consideration by the project author.

6

Proceedings of the 11th Asia-Pacific Software Engineering Conference (APSEC’04) 
1530-1362/04 $ 20.00 IEEE 



5.3 Management Style

Establishing the management style and associated criteria facil-
itates volunteers joining the project. The most important change to
be made during the transition is in the management of the project.
In the cathedral phase, the project author or core team makes all
decisions on their own. In the bazaar phase, the project author has
to open up the development process and allow others to partici-
pate in the project. Other developers have to be encouraged and
their contributions have to be accepted and rewarded. One form
of reward is given when the enhancements or fixes of a contrib-
utor are incorporated into the project and a new version is then
released. This way, the developers perceive their contributions as
useful and will continue to participate in the project. Another im-
portant aspect connected with this is to give credit. It is very im-
portant to acknowledge contributions properly and visibly, as with
a ‘THANKS’ file.2

Unfortunately, changing to a management style which encour-
ages others to get involved can be difficult. Adapting to a new
management style and letting others define the direction and take
control of ‘your’ project can be confronting. During the transition
from the cathedral to the bazaar style, the whole concept of owner-
ship changes. While the project is clearly controlled by the project
author in the cathedral phase, this control must be weakened dur-
ing the transition and ownership given to the project community.
The project author must make the transition from owner in the
cathedral phase to head maintainer who incorporates code from
others based on certain criteria. Releasing the criteria makes the
management transparent and more attractive to volunteers. In fact,
there are many different styles as to how projects in the bazaar
phase are managed. Two examples, at either end of the man-
agement spectrum are described and evaluated through examples
taken from free software projects.

Firstly, the rigid management style. The maintenance of the
Linux kernel is characterised by relatively rigid control. The rea-
sons for such a management style are connected to the technical
risk the project faces. In a kernel, it is vital to avoid feature creep
and bloat and to maintain a clear separation between kernel and
user space. The main task of Linus Torvalds as benevolent dicta-
tor of Linux is to reject rather than to accept code [22]. Centralised
control is beneficial in this since it ensures the scope of the project
remains focused.

Secondly, the loose management style. In contrast to Linux,
KDE is a feature-rich environment where feature improvement and
addition are desirable in many different areas. Unlike the case of
the Linux kernel, there is only a limited risk of feature creep and
bloat. The implication of this is that many people can work on
different areas without much interaction or control. Hence, a flat
hierarchy combined with self-organisation works well.

There is a diversity of management styles which can be used
in the bazaar phase. However, they all share important character-
istics. Firstly, contributions from other developers are encouraged
and all volunteers are welcome (even for bug identification). Sec-
ondly, volunteers can quickly see the impact of their contributions.

2In a similar way to a ‘README’ fi le, it has become a typical con-
vention to have a ‘THANKS’ fi le (all uppercase) in the root of a project’s
tarball. Other common fi les include COPYING, NEWS and TODO as well
as Makefi le and ChangeLog.

Thirdly, the project author relinquishes complete ownership of the
project and delegates defining the direction of the project to the
community. To achieve this an open infrastructure and a license
under which volunteers are willing to share their contributions is
required.

6 Conclusion

Free software is a phenomenon which has attracted much at-
tention recently. The bazaar phase of such projects can be credited
with the feature richness and high quality of free software. The
bazaar phase exploits a large number of volunteers who contribute
to the development of the software through bug reports, additional
requirements, bug fixes and features. However, it has not been
previously described how a project can establish this community
and be a success. The lifecycle model of free software presented
in this paper fills this gap.

We describe a three phase lifecycle for free software projects.
The first phase is characterised by closed development performed
by a small group or developer with much in common with tradi-
tional software development from which we have named the cathe-
dral phase in reference to Eric Raymond. The second phase is a
move from traditional development to community based develop-
ment which we have named the transition phase. Only projects
with certain properties can successfully pass the transition phase.

In order to operate successfully in the bazaar phase a number
of activities must be completed. The first six are crucial, numbers
seven to eleven are important and twelve is desirable:

1. A prototype with plausible promise must have been created.

2. The design of the prototype must be modular.

3. The source code of the prototype must be available and work-
able (ie. compiles and executes).

4. A community of users and developers must be attracted to
the project.

5. The project author must be motivated to manage the project
or find a replacement.

6. Project communication and contribution mechanisms must
be in place.

7. The scope of the project must be well defined.

8. A coding standard or style must be established.

9. Development versions of software must have short release
cycles while user versions must be stable and consistent.

10. A license must be chosen which is attractive to developers.

11. A suitable management style must be selected.

12. An appropriate amount of project documentation must exist.

The final phase is where the project becomes a community
based project and gains the associated advantages — we have
named this the bazaar phase. The lifecycle model proposed here
gives a better understanding of the dynamics of free software and
can assist in their success.

A special thanks goes to Damien Wilmann and Dr. June Sen-
yard for reviewing this paper.

7

Proceedings of the 11th Asia-Pacific Software Engineering Conference (APSEC’04) 
1530-1362/04 $ 20.00 IEEE 



References

[1] R. Fielding A. Mockus and J. Herbsleb. A case study of
open source software development: the apache server. In
Proceedings of the 22nd International Conference on Soft-
ware Engineering (ICSE 2000), pages 263–272, Limerick,
Ireland, June 2000. ACM Press.

[2] B. Arief, C. Gacek, and T. Lawrie. Software architectures
and open source software – where can research leverage the
most? In 1st Workshop on Open Source Software Engineer-
ing. ICSE, 2001.

[3] U. Asklund and L. Bendix. Configuration management for
open source software. In 1st Workshop on Open Source Soft-
ware Engineering. ICSE, 2001.

[4] M. Bergquist and J. Ljungberg. The power of gifts: Organis-
ing social relationships in open source communities. Infor-
mation Systems Journal, 11(4):305–320, 2001.

[5] F. P. Brooks, Jr. The Mythical Man-Month: Essays on Soft-
ware Engineering. Addison-Wesley Publishing Company,
2nd edition, 2000.

[6] A. Capiluppi, P. Lago, and M. Morisio. Evidences in the
evolution of OS projects through changelog analyses. In
3rd Workshop on Open Source Software Engineering. ICSE,
2003.

[7] Debian Free Software Guidelines. http://www.
debian.org/social_contract.

[8] C. DiBona, S. Ockman, and M. Stone, editors. Open
Sources: Voices from the Open Source Revolution. O’Reilly,
Sebastapol, CA, 1999.

[9] A. Endres and D. Rombach. A Handbook of Software and
Systems Engineering. Pearson Addison Wesley, Harlow,
England, 2003.

[10] M. E. Fagan. Design and code inspections to reduce errors
in program development. IBM Systems Journal, 15(3), 1976.

[11] K. F. Fogel. Open Source Development with CVS. The Cori-
olis Group, 1st edition, 1999.

[12] The FreeBSD project. http://www.freebsd.org/.

[13] R. Ghosh. Clustering and dependencies in free/open source
software development: Methodology and tools. First Mon-
day, 8(4), April 2003.

[14] T. J. Halloran and W. L. Scherlis. High quality and open
source software practices. In 2nd Workshop on Open Source
Software Engineering. ICSE, 2002.

[15] P. Himanen. The Hacker Ethic and the Spirit of the Informa-
tion Age. Secker & Warburg, London, 2001.

[16] K. Johnson. A descriptive process model for open-
source software development. Master’s thesis, De-
partment of Computer Science, University of Calgary,
2001. http://sern.ucalgary.ca/students/
theses/KimJohnson/thesis.htm.

[17] N. Jørgensen. Putting it all in the trunk: Incremental software
engineering in the FreeBSD Open Source project. Informa-
tion Systems Journal, 11(4):321–336, 2001.

[18] M. M. Lehman. Programs, life cycles and the laws of soft-
ware evolution. Proceedings of the IEEE, 68(9):1060–1076,
September 1980.

[19] C. Letondal and U. Zdun. Anticipating scientific software
evolution as a combined technological and design approach.
In Proceedings of USE2003, 2003.

[20] B. Massey. Why OSS folks think SE folks are clue-impaired.
In 3rd Workshop on Open Source Software Engineering.
ICSE, 2003.

[21] Bart Massey. Where do open source requirements come from
(and what shold we do about it)? In 2nd Workshop on Open
Source Software Engineering. ICSE, 2002.

[22] R. McMillan. Kernel driver. Linux Magazine, September
1999.

[23] M. Michlmayr and B. M. Hill. Quality and the reliance on
individuals in free software projects. In 3rd Workshop on
Open Source Software Engineering. ICSE, 2003.

[24] A. Oram and M. Loukides. Programming With GNU Soft-
ware. O’Reilly, Sebastopol, CA, 1997.

[25] The Open Source Definition. http://www.
opensource.org/docs/definition.php.

[26] M. O’Sullivan. Making copyright ambidextrous: An expose
of copyleft. The Journal of Information, Law and Technol-
ogy, 3, 2002.

[27] C. Payne. On the security of Open Source software. Infor-
mation Systems Journal, 12(1):61–78, 2002.

[28] E. S. Raymond. The Cathedral and the Bazaar. O’Reilly,
Sebastopol, CA, 1999.

[29] E. S. Raymond. The Art Of Unix Programming. Addison-
Wesley, 2003.

[30] D. C. Schmidt and A. Porter. Leveraging open-source com-
munities to improve the quality & performance of open-
source software. In 1st Workshop on Open Source Software
Engineering. ICSE, 2001.

[31] M. Shaikh and T. Cornford. Version management tools: CVS
to BK in the Linux kernel. In 3rd Workshop on Open Source
Software Engineering. ICSE, 2003.

[32] I. Sommerville. Software Engineering. Addison-Wesley,
third edition, 1989.

[33] I. Stamelos, L. Angelis, A. Oikonomou, and G. L. Bleris.
Code quality analysis in Open-Source software development.
Information Systems Journal, 12(1):43–60, 2002.

[34] L. Torvalds. The linux edge. In C. DiBona, S. Ockman,
and M. Stone, editors, Open Sources: Voices from the Open
Source Revolution. O’Reilly, Sebastapol, CA, 1999.

[35] P. Vixie. Software engineering. In C. DiBona, S. Ockman,
and M. Stone, editors, Open Sources: Voices from the Open
Source Revolution. O’Reilly, Sebastapol, CA, 1999.

8

Proceedings of the 11th Asia-Pacific Software Engineering Conference (APSEC’04) 
1530-1362/04 $ 20.00 IEEE 


